立式磨礦機的二維結構主要由兩部分組成:筒體和導向板,導向板固定在給料中空軸管上,圖中將聯接導向板和中空軸管的支撐臂省去,工作時導向板靜止,筒體按一定的角速度轉動,帶動礦漿在筒體內流動。筒體的旋轉方向為逆時針方向。
由于整個模型都是由一些簡單的幾何體組成,因此,在對于磨粉機中運行計算過程中采用結構化網格對其進行劃分,能夠有效地提高計算效率和計算精度。在二維問題中,網格類型有三角形、四邊形和混合單元組合,綜合考慮初始化時間、計算花費和數值耗散等因素,選擇四邊形網格,將模型共劃分為8330個網格。
針對所計算的立式磨礦機流場為非穩態流場,故選用滑動網格模型進行計算,選擇非禍合求解器,用simple算法對速度-壓力場進行求解。
是經過1000秒迭代后磨機轉速250r/min時筒體橫截面速度全矢量分布中可以看出磨機筒體內流體的流向,還能分析磨礦機內部的流動介質組成。緊貼著筒體作離心運動的流體在導向板的作用下改變了運動軌跡,一部分仍然繼續作離心運動,另一部分則沿著導向板內側面作直線沖擊運動。從圖中顯示的顏色可以看出流場的速度梯度,離筒體中心越遠的流體速度越大,離筒體中心越近的流體速度則越小。可以看出,整個流場實際上是一個大旋渦,這個旋渦受到了導向板的破壞,可以看成是一種受干擾的有軸向流的軸對稱旋渦,當轉速較高時,旋渦內部的大部分區域都是空心的。因此,磨機的主要研磨區域存在于遠離筒體中心靠近筒壁的環形帶,這個區域產生的作用力有擠壓力、剪切力和沖擊力,這些力是起研磨 的主要作用力。